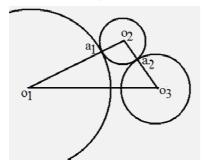
Chaîne de quatre cercles tangents extérieurement

L'objectif est de construire une chaîne de quatre cercles tangents extérieurement, sans aucun point commun autres que leurs quatre points de contact entre cercles adjacents. On appelle C_i ces cercles, avec i de 1 à 4. Leurs centres sont les points o_i , et leurs rayons r_i . Les quatre points de contact sont notés a_i . On verra aussi que ces quatre points sont toujours situés sur un cercle.

1) On se donne les trois points o_1 , o_2 et o_3 , ainsi que le rayon r_2 . Montrer que si r_2 est inférieur à o_1o_2 et à o_2o_3 , et supérieur à $(o_1o_2 + o_2o_3 - o_1o_3)/2$, on peut construire les trois cercles C_1 , C_2 , C_3 .

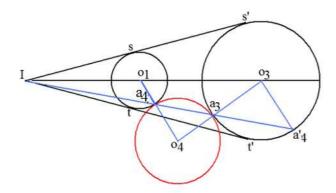


Pour avoir r_1 et r_3 positifs, il est nécessaire que r_2 soit inférieur à o_1o_2 ainsi qu'à o_2o_3 . D'autre part, les cercles C_1 et C_3 ne devant avoir aucun point en commun, il est nécessaire que $r_1 + r_3 < o_1o_3$. Avec $r_1 = o_1o_2 - r_2$ et $r_3 = o_2o_3 - r_2$, cela donne

$$o_1o_2 - r_2 + o_2o_3 - r_2 < o_1o_2$$
, soit

 $r_2 > (o_1o_2 + o_2o_3 - o_1o_3)/2$. Ces conditions sont aussi suffisantes, et permettent de construire les trois cercles tangents deux à deux.

2) En supposant que les cercles C_1 et C_3 ont des rayons différents, montrer qu'il existe une infinité de cercles C_4 tangents extérieurement avec C_1 et C_3 , et donner une façon de les construire. Vérifier que leurs centres sont sur une branche d'hyperbole.



Prenons le point I à l'intersection de la ligne des centres $(o_1 \ o_3)$ et d'une des tangentes communes $(t \ t')$ aux deux cercles. Ce point existe puisque $r_1 \neq r_3$. On sait que l'homothétie de centre I et de rapport r_3/r_1 transforme le cercle C_1 en C_3 . Prenons un point a_4 sur le cercle C_1 . Pour qu'il puisse être un point de contact avec un cercle C_4 tangent aux deux cercles, ce point a_4 doit être sur le grand arc ts (voir figure cicontre).

L'homothétie fait passer du point a_4 au point a_4 , et la droite Ia_4 recoupe le cercle C_3 en un point a_3 . Le centre o_4 d'un cercle c_4 doit être sur c_4 . Montrons qu'il est aussi sur c_4 aussi sur c_4 aussi sur c_5 aussi sur c_6 aussi sur c

Comme $o_4o_3 = r_4 + r_3$ et $o_4o_1 = r_4 + r_1$, $o_4o_3 - o_4o_1 = r_3 - r_1$ = cte. Cela signifie que le point o_4 décrit une branche d'hyperbole de foyers o_1 et o_3 , le point o_4 allant à l'infini lorsque le cercle devient la droite $(t\ t')$ ou $(s\ s')$. L'arc d'hyperbole a donc pour asymptotes les médiatrices de $[t\ t']$ et $[s\ s']$ (figure 1).

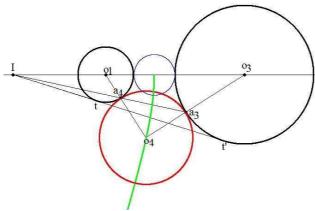
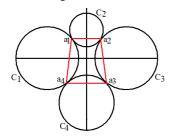


Figure 1: Un cercle C_4 en rouge tangent au cercles C_1 et C_3 . Le cercle bleu est un cas particulier. La partie inférieure de l'arc d'hyperbole décrit par o_4 est indiquée en vert.

4) En prenant un cercle C_4 obtenu grâce à la construction précédente, et sous réserve qu'il n'ait aucun point commun avec le cercle C_2 , on vient d'obtenir une chaîne de quatre cercles tangents deux à deux et sans points communs autres que les points de contact. Montrer alors que les quatre points de contact a_i des cercles sont sur un même cercle. On admettra la propriété suivante a_i : Si les cercles a_i 0 et a_i 2 ont des rayons différents, on passe de l'un à l'autre par l'homothétie de centre a_i 4 et que a_i 6 que a_i 7 et a_i 8 que a_i 8 que a_i 9 et a_i 9 que $a_$

On distingue deux cas:



* Si les cercles C_1 et C_3 ont le même rayon, les centres des cercles C_2 et C_4 sont sur la médiatrice de $[c_1 \ c_3]$ et les points de contact a_1 et a_2 , ainsi que a_3 et a_4 , sont symétriques par rapport à cette médiatrice. Le quadrilatère a_1 a_2 a_3 a_4 est un trapèze isocèle ayant pout axe de symétrie cette médiatrice. Il possède un cercle circonscrit, centré à l'intersection de la médiatrice précédente et de la médiatrice de $[a_1 \ a_4]$.

* Les cercles C_1 et C_3 ont des rayons différents. L'inversion dont le cercle a pour centre I et pour rayon R transforme le cercle C_1 en cercle C_3 . Elle fait passer de a_1 sur C_1 à a_2 sur C_2 , ainsi que de a_4 sur C_1 à a_3 sur C_3 . On en déduit que Ia_1 $Ia_2 = Ia_4$ Ia_3 . Prenons le cercle C passant par a_1 a_2 a_4 . La puissance de I par rapport à ce cercle est égale à Ia_1 Ia_2 . Elle est aussi égale à Ia_4 Ia_3 . Comme a_4 est sur le cercle C, le point a_3 est aussi sur ce cercle (*figure 2*).

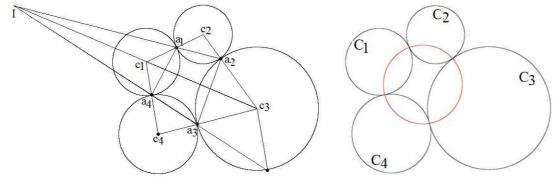
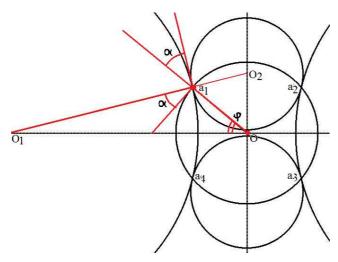


Figure 2 : A gauche, l'inversion centrée en I fait passer des cercles C_1 à C_3 , et notamment de a_1 à a_2 et de a_4 à a_3 . A droite, cercle passant par les points de contact des 4 cercles.

¹ Cette propriété est démontrée dans le chapitre sur la géométrie de l'inversion, http://www.pierreaudibert.fr/explor/inversion.pdf.

5) La propriété précédente donne un autre moyen de construire une chaîne de quatre cercles tangents. Partons du cercle unité C sur lequel on place quatre points a_1 , a_2 , a_3 , a_4 dans cet ordre, qui vont devenir les points de contact de la chaîne des 4 cercles. Commencer par prendre les quatre points de façon qu'ils forment un rectangle. Puis construire une chaîne en évitant que les cercles ne se coupent.

Sans perte de généralité, choisissons les points a_1 et a_4 symétriques par rapport à (Ox), avec un angle φ entre [Ox) et $[Oa_1)$, le cercle C_1 passant par ces deux points. Donons-nous un angle α entre $[Oa_1)$ et la tangente au cercle C_1 en a_1 . Remarquons que cet angle α va non seulement se retrouver en a_4 mais aussi en a_2 et a_3 , car lorsque deux cercles se coupent, l'angle de leurs deux tangentes aux deux points de contact est le même.



Le point a_1 a pour coordonnées cos φ , sin φ . Dans le triangle Oa_1o_1 , les angles sont φ , $\alpha + \pi/2$, et $\pi - \alpha - \pi/2 - \varphi = \pi/2 - \alpha - \varphi$. Avec $Oa_1 = 1$, on a :

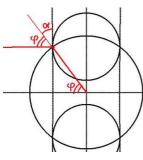
 $1 / \sin(\pi/2 - \alpha - \varphi) = Oo_1 / \sin(\alpha + \pi/2)$ = $o_1a_1 / \sin \varphi$. On en déduit que le point o_1 a pour coordonnées $x_1 = -\cos\alpha / \cos(\alpha + \varphi)$, et $y_1 = 0$, et que le rayon de C_1 est

 $r_1 = \sin \varphi / \cos(\alpha + \varphi)$

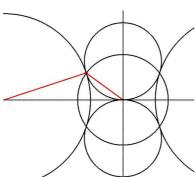
La droite $(o_1 a_1)$ a pour pente

 $m = -\sin \varphi / (\cos \varphi + x_1)$ et pour équation $Y = m X - m x_1$. Le centre o_2 du cercle C_2 est sur cette droite, avec pour coordonnées $x_2 = 0$ et $y_2 = -m x_1$. Son rayon est $r_2 = a_1 o_2$.

On connaît maintenant les centres et les rayons des quatre cercles, en utilisant les symétries de la figure. Mais il y a des contraintes.



Si l'on veut que les cercles restent tangents extérieurement, il convient que pour α donné, $\varphi < \pi/2 - \alpha$, le cas limite où le cercle C_1 devient une droite étant indiqué sur la figure ci-contre.



On constate aussi que les cercles C_2 et C_4 sont tangents lorsque $\varphi = \alpha$.

Si l'on veut éviter que ces deux cercles ne se coupent, on doit prendre $\varphi > \alpha$.

La contrainte $\alpha < \varphi < \pi/2 - \alpha$ impose à son tour que $\alpha < \pi/4$.

Un résultat est donné sur la figure 3.

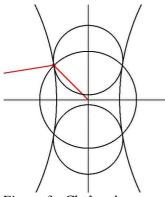


Figure 3 : Chaîne de quatre cercles tangents extérieurement et ne se coupant pas, pour $\alpha = \pi/5$ et $\varphi = \pi/4$.

6) Pour obtenir une chaîne quelconque, appliquer une transformation de Mobius M de la forme $M(z) = \frac{z-m}{\overline{m} \ z+1}$ sur la figure 3 précédemment obtene (z, M(z)) et m sont des nombres complexes). Une telle transformation a pour particularité de conserver le cercle unité et de préserver les angles², ce que l'on admettra ici.

Sous l'effet d'une telle transformation, les quatre points a_1 , a_2 , a_3 , a_4 deviennent d'autres points sur le cercle unité. Les cercles transformés sont toujours tangents en ces nouveaux points et font toujours le même angle α avec le cercle unité. Un résultat est donné sur la *figure 4*.

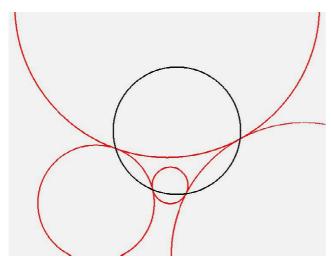


Figure 4 : Chaîne de quatre cercles tangents extérieurement, obtenue à partir de la figure 3 avec une transformation de Mobius où m = 0, 1 + i 0, 5.

² C'est un fait bien connu lorsque l'on se place dans le disque de Poincaré en géométrie hyperbolique (cf. http://www.pierreaudibert.fr/explor/disquedePoincare.pdf).